Abstract
Real-time seed detection on resource-constrained embedded devices is essential for the agriculture industry and crop yield. However, traditional seed variety detection methods either suffer from low accuracy or cannot directly run on embedded devices with desirable real-time performance. In this paper, we focus on the detection of rapeseed varieties and design a dual-dimensional (spatial and channel) pruning method to lighten the YOLOv7 (a popular object detection model based on deep learning). We design experiments to prove the effectiveness of the spatial dimension pruning strategy. And after evaluating three different channel pruning methods, we select the custom ratio layer-by-layer pruning, which offers the best performance for the model. The results show that using custom ratio layer-by-layer pruning can achieve the best model performance. Compared to the YOLOv7 model, this approach results in mAP increasing from 96.68% to 96.89%, the number of parameters reducing from 36.5 M to 9.19 M, and the inference time per image on the Raspberry Pi 4B reducing from 4.48 s to 1.18 s. Overall, our model is suitable for deployment on embedded devices and can perform real-time detection tasks accurately and efficiently in various application scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.