Abstract

ObjectiveThis study aimed to identify Key Performance Indicators (KPIs) for men’s swimming strokes using Principal Component Analysis (PCA) and Multiple Regression Analysis to enhance training strategies and performance optimization. The analyses included all men’s individual 100 m races of the 2019 European Short-Course Swimming Championships.ResultsDuration from 5 m prior to wall contact (In5) emerged as a consistent KPI for all strokes. Free Swimming Speed (FSS) was identified as a KPI for 'continuous' strokes (Breaststroke and Butterfly), while duration from wall contact to 10 m after (Out10) was a crucial KPI for strokes with touch turns (Breaststroke and Butterfly). The regression model accurately predicted swim times, demonstrating strong agreement with actual performance. Bland and Altman analyses revealed negligible mean biases: Backstroke (0% bias, LOAs − 2.3% to + 2.3%), Breaststroke (0% bias, LOAs − 0.9% to + 0.9%), Butterfly (0% bias, LOAs − 1.2% to + 1.2%), and Freestyle (0% bias, LOAs − 3.1% to + 3.1%). This study emphasizes the importance of swift turning and maintaining consistent speed, offering valuable insights for coaches and athletes to optimize training and set performance goals. The regression model and predictor tool provide a data-driven approach to enhance swim training and competition across different strokes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.