Abstract

SignificanceThe CuO, Al2O3, and TiO2 nanoparticles find extensive applications in advanced chemical reaction-based thermal transport and quadratic convective nanofluids due to their exceptional thermal properties and chemical stability. Increased thermal conductivity of these nanoparticles used to enhance heat transfer in various chemical reactors, resistance to chemical degradation and photocatalytic reactors and solar energy applications. MotiveThis study brings the investigation about quadratic convection-based thermal transport to infinite shear rate for magnetized ternary radiative cross nanofluid with homogeneous-heterogeneous chemical reactions. Water is taken as base fluid and three nanoparticles are Copper oxide (CuO), aluminium oxide (Al2O3), and titanium dioxide (TiO2). Heat transport analysis is made through quadratic convection, magnetic field and thermal radiation. Concentration of nanofluid is scrutinized though homogeneous-heterogeneous chemical reactions. Methodology: Physical problem with assumptions generates the system of partial differential equations (PDEs) and these PDEs are transformed into ordinary differential equations (ODEs) through similarity variables. Furthermore, a unique combination of Bvp4c and Levenberg Marquardt neural network (LM-NN) schemes is utilized to fetch the numerical solutions. Bvp4c is utilized to solve the governing equations, while LM-NN serves to enhance predictive capabilities and capture intricate nonlinear relationships. FindingsMagnetic environment, chemical process, radiations effects and volumetric fraction of nanoparticles make better heat transfer efficiency and control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.