Abstract

We define and solve classes of sparse matrix problems that arise in multilevel modelling and data analysis. The classes are indexed by the number of nested units, with two-level problems corresponding to the common situation, in which data on level-1 units are grouped within a two-level structure. We provide full solutions for two-level and three-level problems, and their derivations provide blueprints for the challenging, albeit rarer in applications, higher-level versions of the problem. While our linear system solutions are a concise recasting of existing results, our matrix inverse sub-block results are novel and facilitate streamlined computation of standard errors in frequentist inference as well as allowing streamlined mean field variational Bayesian inference for models containing higher-level random effects. doi: 10.1017/S1446181120000061

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.