Abstract

Cyclic peptides comprising endocyclic organic fragments, "cyclo-organopeptides", can be probes for perturbing protein-protein interactions (PPIs). Finding loop mimics is difficult because of high conformational variability amongst targets. Backbone Matching (BM), introduced here, helps solve this problem in the illustrative cases by facilitating efficient evaluation of virtual cyclo-organopeptide core-structure libraries. Thus, 86 rigid organic fragments were selected to build a library of 602 cyclo-organopeptides comprising Ala and organic parts: "cyclo-{-(Ala)n -organo-}". The central hypothesis is "hit" library members have accessible low energy conformers corresponding to backbone structures of target protein loops, while library members which cannot attain this conformation are probably unworthy of further evaluation. BM thereby prioritizes candidate loop mimics, so that less than 10 cyclo-organopeptides are needed to be prepared to find leads for two illustrative PPIs: iNOS ⋅ SPSB2, and uPA ⋅ uPAR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.