Abstract

BackgroundRecombinant protein expression and purification remains a fundamental issue for biotechnology. Recently we found that two short self-assembling amphipathic peptides 18A (EWLKAFYEKVLEKLKELF) and ELK16 (LELELKLKLELELKLK) can induce the formation of active protein aggregates in Escherichia coli (E. coli), in which the target proteins retain high enzymatic activities. Here we further explore this finding to develop a novel, facile, matrix-free protein expression and purification approach.ResultsIn this paper, we describe a streamlined protein expression and purification approach by using cleavable self-aggregating tags comprising of one amphipathic peptide (18A or ELK16) and an intein molecule. In such a scheme, a target protein is first expressed as active protein aggregate, separated by simple centrifugation, and then released into solution by intein-mediated cleavage. Three target proteins including lipase A, amadoriase II and β-xylosidase were used to demonstrate the feasibility of this approach. All the target proteins released after cleavage were highly active and pure (over 90% in the case of intein-ELK16 fusions). The yields were in the range of 1.6-10.4 μg/mg wet cell pellet at small laboratory scale, which is comparable with the typical yields from the classical his-tag purification, the IMPACT-CN system (New England Biolabs, Beverly, MA), and the ELP tag purification scheme.ConclusionsThis tested single step purification is capable of producing proteins with high quantity and purity. It can greatly reduce the cost and time, and thus provides application potentials for both industrial scale up and laboratorial usage.

Highlights

  • Recombinant protein expression and purification remains a fundamental issue for biotechnology

  • We found that two short terminal self-assembling peptides, an amphipathic alpha peptide 18A (EWLKAFYEKVLEKLKELF) (Wu W, Xing L, Zhou B, Cai Z, Chen B, Lin Z: Assembly of active protein aggregates in vivo induced by terminally attached amphipathic peptide, submitted) and a beta peptide ELK16 (LELELKLKLELELKLK) [6] can induce the formation of highly active enzyme aggregates in vivo [7,8,9,10]

  • Plasmid construction Plasmids encoding the fusion proteins (Figure 2) for the target proteins with 18A peptide (18A) or ELK16 peptide (ELK16) attached were based on the plasmids pAc18A (Wu W, Xing L, Zhou B, Cai Z, Chen B, Lin Z: Assembly of active protein aggregates in vivo induced by terminally attached amphipathic peptide, submitted) and pET30a-lipase A (LipA)-ELK16 [6], constructed previously in our lab

Read more

Summary

Introduction

Recombinant protein expression and purification remains a fundamental issue for biotechnology. We found that two short terminal self-assembling peptides, an amphipathic alpha peptide 18A (EWLKAFYEKVLEKLKELF) (Wu W, Xing L, Zhou B, Cai Z, Chen B, Lin Z: Assembly of active protein aggregates in vivo induced by terminally attached amphipathic peptide, submitted) and a beta peptide ELK16 (LELELKLKLELELKLK) [6] can induce the formation of highly active enzyme aggregates in vivo [7,8,9,10] This has inspired us to devise a protein expression and purification scheme in combination with a self-

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call