Abstract

A rhodium-catalyzed tandem enantioselective C-H silylation/alkene hydrosilylation of dihydrosilanes, which enables the streamlined construction of a wide range of silicon-stereogenic silanes, is successfully developed. This process involves a SiH2-steered highly enantioselective C-H silylation to furnish the corresponding desymmetric monohydrosilanes, which are subsequently trapped with alkenes in a stereospecific fashion to build functionally diverse asymmetrically tetrasubstituted silanes. This general strategy combines readily available dihydrosilanes and alkenes to construct various enantioenriched silicon-stereogenic silanes, including 9-silafluorenes, Si-bridged ladder compounds, and benzosilolometallocenes, in a single step with good to excellent yields and enantioselectivities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call