Abstract

BackgroundGenetically engineered mice (GEM) are essential tools for understanding gene function and disease modeling. Historically, gene targeting was first done in embryonic stem cells (ESCs) derived from the 129 family of inbred strains, leading to a mixed background or congenic mice when crossed with C57BL/6 mice. Depending on the number of backcrosses and breeding strategies, genomic segments from 129-derived ESCs can be introgressed into the C57BL/6 genome, establishing a unique genetic makeup that needs characterization in order to obtain valid conclusions from experiments using GEM lines. Currently, SNP genotyping is used to detect the extent of 129-derived ESC genome introgression into C57BL/6 recipients; however, it fails to detect novel/rare variants.ResultsHere, we present a computational pipeline implemented in the Galaxy platform and in BASH/R script to determine genetic introgression of GEM using next generation sequencing data (NGS), such as whole genome sequencing (WGS), whole exome sequencing (WES) and RNA-Seq. The pipeline includes strategies to uncover variants linked to a targeted locus, genome-wide variant visualization, and the identification of potential modifier genes. Although these methods apply to congenic mice, they can also be used to describe variants fixed by genetic drift. As a proof of principle, we analyzed publicly available RNA-Seq data from five congenic knockout (KO) lines and our own RNA-Seq data from the Sall2 KO line. Additionally, we performed target validation using several genetics approaches.ConclusionsWe revealed the impact of the 129-derived ESC genome introgression on gene expression, predicted potential modifier genes, and identified potential phenotypic interference in KO lines. Our results demonstrate that our new approach is an effective method to determine genetic introgression of GEM.

Highlights

  • Engineered mice (GEM) are essential tools for understanding gene function and disease modeling

  • Focusing on KO samples, we found that the number and ratio of novel/existing variants varied among the KO lines, and that novel variants accounted for more than 50% of the total variants, as seen in Mecp2 and Gtf2ird1 KOs (Fig. 2a)

  • Genetic interference of Cdkn1a, a canonical target of Sall2 As an example of how introgressed genes can act as gene expression modifiers, we focused on Cdkn1a (p21CIP/WAF), a gene known to be regulated by both SALL2 and ANG

Read more

Summary

Introduction

Engineered mice (GEM) are essential tools for understanding gene function and disease modeling. Inbred mice, produced by brother-sister mating, are isogenic and homozygous, making it possible to know the Farkas et al BMC Genomics (2019) 20:131 coat color) in order to obtain chimeras showing a mixture of black and agouti (or albino) spots, suitable to estimate the degree of chimerism. These chimeras need to be crossed with wild-type (WT) mice to test for germline transmission. This timeframe can be reduced when using marker-assisted backcrossing (speed congenics), it could still take at least 2.5 years [11]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call