Abstract

We derive error estimates in certain weighted L 2-norms for the streamline diffusion and discontinuous Galerkin finite element methods for steady state, energy dependent, Fermi and Fokker-Planck equations in two space dimensions, giving error bounds of order O(hk+1/2), for the weighted current function J, as in the convection dominated convection-diffusion problems, with J ε H k+1(Ω) and h being the quasi-uniform mesh size in triangulation of our three dimensional phase-space domain Ω = Iz, × Iy × Iz , with z corresponding to the velocity variable. Our studies, in this paper, contain a priori error estimates for Fermi and Fokker-Planck equations with both piecewise continuous and piecewise discontinuous (in x and xy-directions) trial functions. The analyses are based on stability estimates which relay on an angular symmetry (not isotropy!) assumption. A continuation of this paper, the a posteriori error estimates for Fermi and Fokker-Planck equations, is the subject of a future work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.