Abstract

Starving cells of Dictyostelium discoideum undergo a developmental cycle were cAMP is autocatalytically produced and relayed from cell to cell, resulting in the propagation of excitation waves over a spatially extended population. Later on the homogeneous cell layer transforms into a pattern of cell streams directed perpendicular to the cAMP waves. Here we chemically influence aggregation competent cells by isopropylidenadenosin (IPA), an adenosine derivative. It can be assumed, that IPA acts via specific adenosine binding sites localized in the cellular membrane. We find, however, that pattern formation and cellular aggregation under the influence of IPA differ considerably compared to experiments with adenosine. In particular, our observations point towards an inhibitory effect on adenylate cyclase (ACA), the key enzyme in the autocatalytic production process of cAMP inside the cell. Our results suggest the existence of a direct coupling (via intracellular affection) or indirect coupling (via inhibition of cAMP binding) of the specific adenosine receptors to the regulatory circuit that controls cyclic intra- and extracellular cAMP concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.