Abstract

The 3GPP Long Term Evolution (LTE) Release-8 specifications are designed to deliver higher peak data rates, higher throughput and lower air-interface latency compared to 2G and 3G systems. This higher performance will make it possible to support more demanding applications beyond web-browsing and voice, requiring higher data rates and stricter QoS constraints. Video services are becoming increasingly popular over the Internet indicating that the demand for such high data-rate video applications over cellular wireless will continue to grow. However, in order to make these services commercially viable in a LTE system it is necessary for the air-interface to deliver high quality services to a significant number of users simultaneously. In this paper we investigate the video capacity of a LTE air-interface using realistic video traffic models. An LTE air-interface can support multiple-antenna transmit arrays and several multiple antenna transmission modes to increase system capacity. We investigate the benefits of using 4 transmit antennas compared to 2 transmit antennas on the video capacity of an LTE system. The results from our investigation indicate that the capacity benefits with 4 transmit antennas are much higher with video services than those observed with other traffic models such as the full-buffer traffic model. The results also show that a 10MHz TDD LTE system can service upto 48 users per sector with 256Kbps video streams in the downlink indicating that such services can be commercially viable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call