Abstract

The seismoelectric effect of porous media is the main basis for seismoelectric logging. At present, most of the studies on the seismoelectric effect in unsaturated porous media adopt the model of pores with continuous distribution of gas and liquid. There is a lack of theoretical research on the micro mechanism of the seismoelectric effect of unsaturated porous media with discrete gas phase, and the existing studies do not consider the effect of the electric double layer at the gas–liquid interface on the seismoelectric effect. Based on the capillary model, this work adopted the gas phase discrete model, combined the electric double layer theory and the seepage principle, considered the effect of electric double layer at the pore wall and the gas–liquid interface, and studied the micro principle of the seismoelectric effect of unsaturated porous media. Firstly, we studied the variation of gas–water two-phase flow pattern with saturation in unsaturated pores, then proposed the equivalent principle of series circuits, deduced the effective streaming current and conductance of a pore containing multiple bubbles, and then deduced the streaming potential coupling coefficient in the unsaturated pores. We also studied the effect of pore parameters such as saturation, pore size, bubble spacing, pore fluid viscosity, and salinity on the streaming potential coupling coefficient. The results show that the streaming potential coupling coefficient first increases and then decreases with the decrease in saturation, which is the same as the trend measured in Allègre’s experiment, and provide a theoretical explanation for the non-monotonic change in the coupling coefficient with saturation in unsaturated porous media.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call