Abstract

Implantable medical devices and biosensors are pivotal in revolutionizing the field of medical technology by opening new dimensions in the field of disease detection and cure. These devices need to harness a biocompatible and physiologically sustainable safe power source instead of relying on external stimuli, overcoming the constraints on their applicability in-vivo. Here, by appealing to the interplay of electromechanics and hydrodynamics in physiologically relevant microvessels, we bring out the role of charged endothelial glycocalyx layer (EGL) towards establishing a streaming potential across physiological fluidic conduits. We account for the complex rheology of blood-mimicking fluid by appealing to Newtonian fluid model representing the blood plasma and a viscoelastic fluid model representing the whole blood. We model the EGL as a poroelastic layer with volumetric charge distribution. Our results reveal that for physiologically relevant micro-flows, the streaming potential induced is typically of the order of 0.1 V/mm, which may turn out to be substantial towards energizing biosensors and implantable medical devices whose power requirements are typically in the range of micro to milliwatts. We also bring out the specific implications of the relevant physiological parameters towards establishment of the streaming potential, with a vision of augmenting the same within plausible functional limits. We further unveil that the dependence of streaming potential on EGL thickness might be one of the key aspects in unlocking the mystery behind the angiogenesis pattern. Our results may open up novel bio-sensing and actuating possibilities in medical diagnostics as well as may provide a possible alternative regarding the development of physiologically safe and biocompatible power sources within the human body.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.