Abstract

Real surfaces are typically heterogeneous, and microchannels with heterogeneous surfaces are commonly found due to fabrication defects, material impurities, and chemical adsorption from solution. Such surface heterogeneity causes a nonuniform surface potential along the microchannel. Other than surface heterogeneity, one could also pattern the various surface potentials along the microchannels. To understand how such variations affect electrokinetic flow, we proposed a model to describe its behavior in circular microchannels with nonuniform surface potentials. Unlike other models, we considered the continuities of flow rate and electric current simultaneously. These requirements cause a nonuniform electric field distribution and pressure gradient along the channel for both pressure-driven flow (streaming potential) and electric-field-driven flow (electroosmosis). The induced nonuniform pressure and electric field influence the electrokinetic flow in terms of the velocity profile, the flow rate, and the streaming potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.