Abstract

The streaming instability provides an efficient way of overcoming the growth barriers in the initial stages of the planet formation process. Considering the realistic case of a particle size distribution, the dynamics of the system is altered compared to the outcome of single size models. In order to understand the outcome of the multispecies streaming instability in detail, we perform a large parameter study in terms of particle number, particle size distribution, particle size range, initial metallicity, and initial particle scale height. We study vertically stratified systems and determine the metallicity threshold for filament formation. We compare these with a system where the initial particle distribution is unstratified and find that its evolution follows that of its stratified counterpart. We find that a change in the particle number does not result in significant variation in the efficiency and timing of filament formation. We also see that there is no clear trend for how varying the size distribution in combination with the particle size range changes the outcome of the multispecies streaming instability. Finally, we find that an initial metallicity of Zinit = 0.005 and Zinit = 0.01 both result in similar critical metallicity values for the start of filament formation. Our results show that the inclusion of a particle size distribution into streaming instability simulations, while changing the dynamics as compared to mono-disperse systems, does not result in overall unfavorable conditions for solid growth. We attribute the subdominant role of multiple species to the high-density conditions in the midplane, conditions under which linear stability analysis also predict little difference between single and multiple species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call