Abstract

We study streaming algorithms for the fundamental geometric problem of computing the cost of the Euclidean Minimum Spanning Tree (MST) on an n-point set X ⊂ ℝd. In the streaming model, the points in X can be added and removed arbitrarily, and the goal is to maintain an approximation in small space. In low dimensions, (1+є) approximations are possible in sublinear space [Frahling, Indyk, Sohler, SoCG ’05]. However, for high dimensional spaces the best known approximation for this problem was Õ(logn), due to [Chen, Jayaram, Levi, Waingarten, STOC ’22], improving on the prior O(log2 n) bound due to [Indyk, STOC ’04] and [Andoni, Indyk, Krauthgamer, SODA ’08]. In this paper, we break the logarithmic barrier, and give the first constant factor sublinear space approximation to Euclidean MST. For any є≥ 1, our algorithm achieves an Õ(є−2) approximation in nO(є) space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call