Abstract

The need to process streaming data, which arrives continuously at high-volume in real-time, arises in a variety of contexts including data produced by experiments, collections of environmental or network sensors, and running simulations. Streaming data can also be formulated as queries or transactions which operate on a large dynamic data store, e.g. a distributed database.We describe a lightweight, portable framework named PHISH which provides a communication model enabling a set of independent processes to compute on a stream of data in a distributed-memory parallel manner. Datums are routed between processes in patterns defined by the application. PHISH provides multiple communication backends including MPI and sockets/ZMQ. The former means streaming computations can be run on any parallel machine which supports MPI; the latter allows them to run on a heterogeneous, geographically dispersed network of machines.We illustrate how streaming MapReduce operations can be implemented using the PHISH communication model, and describe streaming versions of three algorithms for large, sparse graph analytics: triangle enumeration, sub-graph isomorphism matching, and connected component finding. We also provide benchmark timings comparing MPI and socket performance for several kernel operations useful in streaming algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.