Abstract

Summary Simultaneous variations in weather and climate over widely separated regions are commonly known as “hydroclimatic teleconnections”. Rainfall and runoff patterns, over continents, are found to be significantly teleconnected, with large-scale circulation patterns, through such hydroclimatic teleconnections. Though such teleconnections exist in nature, it is very difficult to model them, due to their inherent complexity. Statistical techniques and Artificial Intelligence (AI) tools gain popularity in modeling hydroclimatic teleconnection, based on their ability, in capturing the complicated relationship between the predictors (e.g. sea surface temperatures) and predictand (e.g., rainfall). Genetic Programming is such an AI tool, which is capable of capturing nonlinear relationship, between predictor and predictand, due to its flexible functional structure. In the present study, gridded multi-site weekly rainfall is predicted from El Nino Southern Oscillation (ENSO) indices, Equatorial Indian Ocean Oscillation (EQUINOO) indices, Outgoing Longwave Radiation (OLR) and lag rainfall at grid points, over the catchment, using Genetic Programming. The predicted rainfall is further used in a Genetic Programming model to predict streamflows. The model is applied for weekly forecasting of streamflow in Mahanadi River, India, and satisfactory performance is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.