Abstract

Data mining process on dynamically changing data have several problems, such as unknown data size and changing of class distribution . Random sampling method commonly applied for extracting general synopsis from very large database. In this research, Vitter’s reservoir algorithm is used to retrieve k records of data from the database and put into the sample. Sample is used as input for classification task in data mining. Sample type is backing sample and it saved as table contains value of id, priority and timestamp. Priority indicates the probability of how long data retained in the sample. Kullback-Leibler divergence applied to measure the similarity between database and sample distribution. Result of this research is showed that continuously taken samples randomly is possible when transaction occurs. Kullback-Leibler divergence with interval from 0 to 0.0001, is a very good measure to maintain similar class distribution between database and sample. Sample results are always up to date on new transactions with similar class distribution. Classifier built from balance class distribution showed to have better performance than from imbalance one.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.