Abstract

Stream analytics have an insatiable demand for memory and performance. Emerging hybrid memories combine commodity DDR4 DRAM with 3D-stacked High Bandwidth Memory (HBM) DRAM to meet such demands. However, achieving this promise is challenging because (1) HBM is capacity-limited and (2) HBM boosts performance best for sequential access and high parallelism workloads. At first glance, stream analytics appear a particularly poor match for HBM because they have high capacity demands and data grouping operations, their most demanding computations, use random access. This paper presents the design and implementation of StreamBox-HBM, a stream analytics engine that exploits hybrid memories to achieve scalable high performance. StreamBox-HBM performs data grouping with sequential access sorting algorithms in HBM, in contrast to random access hashing algorithms commonly used in DRAM. StreamBox-HBM solely uses HBM to store Key Pointer Array (KPA) data structures that contain only partial records (keys and pointers to full records) for grouping operations. It dynamically creates and manages prodigious data and pipeline parallelism, choosing when to allocate KPAs in HBM. It dynamically optimizes for both the high bandwidth and limited capacity of HBM, and the limited bandwidth and high capacity of standard DRAM. StreamBox-HBM achieves 110 million records per second and 238 GB/s memory bandwidth while effectively utilizing all 64 cores of Intel's Knights Landing, a commercial server with hybrid memory. It outperforms stream engines with sequential access algorithms without KPAs by 7x and stream engines with random access algorithms by an order of magnitude in throughput. To the best of our knowledge, StreamBox-HBM is the first stream engine optimized for hybrid memories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.