Abstract
Variations in stream water, streambed, adjacent stream sediment, and groundwater temperatures in the Haean basin, Korea were examined using time series analyses including auto-correlation, spectral density, and cross-correlation functions. The temperatures of the ambient air, stream water, streambed (depth = 10 cm), and adjacent stream sediment (depth = 10 cm) showed distinctive diurnal variations with long-term seasonal cooling trends, while groundwater temperature showed only a seasonal decreasing trend with little diurnal variations. Auto-correlations and spectral densities of the stream water, streambed, and sediment temperatures also revealed strong daily cyclical behaviors, with longer periodic cycles varying from weekly to monthly. Amplitudes and lag times of the streambed thermal signals were also affected by the hydraulic conductivities of the sediments. Lower hydraulic conductivity indicates a more attenuated and slower thermal response for the streambed. The calculated vertical water flow velocities of the streambed revealed that the investigated stream locations were under losing or gaining conditions, depending on the location and time.
Highlights
IntroductionSilliman and Booth [15] suggested that a time series record of the temperatures of the stream water and streambed may be helpful in qualitatively identifying the locations of the inflows (gaining condition) and outflows (losing condition) in the stream
The first isothermal interval, a rapidly decreasing interval appeared at depths of 5–10 m and a secondary isothermal interval reappeared. These results suggest that air temperature variation can affect the groundwater temperature to a depth of about 10 m in this basin
We examined variation in the characteristics of the stream water, streambed, surrounding sediment, and groundwater temperatures in the Haean basin, Korea
Summary
Silliman and Booth [15] suggested that a time series record of the temperatures of the stream water and streambed may be helpful in qualitatively identifying the locations of the inflows (gaining condition) and outflows (losing condition) in the stream. This method assumes that the temperature of the underlying groundwater at some depth is stable, while the stream water temperature, mostly affected by atmospheric temperature, varies greatly on a daily basis
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.