Abstract

Benthic suspension feeders are important components of aquatic ecosystems, often dominating the use of space and influencing patterns of material cycling between the water column and benthos. Biomechanical theory predicts that feeding by these consumers is governed by the flux (i.e., product of food concentration and velocity) of particulate material to their feeding appendages. We performed a laboratory flume experiment to test how feeding by larval black flies (Simulium vittatum Zett.) responds to independent manipulations of flow and food concentration. We quantified larval body posture, flick rate of the labral fans, and ingestion rate as a function of two concentrations of a baker's yeast/chalk suspension (0.96 and 4.44mg l-1) and five water velocities (20, 30, 45, 60, and 90cm s-1). Using analysis of covariance, we found that both flick rate and ingestion rate increased in a decelerating manner with increasing velocity, while fan height decreased linearly with increasing velocity. In contrast, food concentration had no effect on any aspect of feeding behavior. Thus, although both velocity and food concentration contribute to particle flux, our results indicate that the two were not substitutable under the range of conditions tested here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.