Abstract

Stream capture and piracy in tectonically active regions have been described in geomorphic systems worldwide; however, few studies show the influence stream capture has on the rock record. We present an analysis of fluvial fan stratigraphy that developed as a result of multiple stream capture events, building a complex stratigraphic succession beneath the Lawrence Livermore National Laboratory (LLNL), California. The LLNL site is located in the southeast portion of the tectonically active Livermore Basin, a transpressional basin in the California Coast Ranges. Geomorphic evidence for this stream capture include: (1) the Arroyo Seco enters the basin from the south through an uplifted fault block, (2) south of this fault block lies an abandoned Arroyo Seco fluvial fan, (3) north of the fault block, in the Livermore Basin, Arroyo Seco built a 7-km 2 fluvial fan, apparently forcing the Arroyo Las Positas, a smaller stream that enters the basin from the east, northward around the Arroyo Seco fan, and (4) a knickpoint exists near the point of capture on Arroyo Seco. Stratigraphic evidence reflecting this shift in the Arroyo Seco position into the Livermore Basin was evaluated through a provenance study of 215 gravel units from 34 boreholes spaced evenly over the 2.6 km 2 LLNL site. The Arroyo Seco derives its sediment from both the Jurassic–Cretaceous Franciscan Assemblage and the Altamont Hills (which are comprised of Mesozoic Great Valley Group and Tertiary continental sediments). The Arroyo Las Positas drains only the Altamont Hills and thus lacks the Franciscan Assemblage-derived clasts. The origin of the individual gravel units was determined by the percentage of Franciscan Assemblage indicator pebbles (red chert, green chert and blueschist) in the samples. Through this analysis, we determined that high-percentage Franciscan Assemblage-derived clasts were present below a depth of approximately 35 m below the surface, low-percentage Franciscan Assemblage-derived clasts were present at depths between 35 m and 18 m, and high-percentage Franciscan Assemblage-derived clasts were present from depths of approximately 18 m to the surface of the fluvial fan. These results indicate that the Arroyo Seco flowed north and deposited sediments at the LLNL site, then was later absent from the basin at which time it formed a fan south of the fault block. During this absence of the Arroyo Seco, the Arroyo Las Positas, a westerly flowing stream, dominated the sediment supply at the LLNL site. The Arroyo Seco was then captured by a gully headward eroding through the uplifted fault block, redirecting the Arroyo Seco into the basin once again. This history of multiple stream captures created three stratigraphic units with alternating overall channel and paleoflow orientations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call