Abstract

Video applications have become one of the major services in the engineering field, which are implemented by server–client systems connected via the Internet, broadcasting services for mobile devices such as smartphones and surveillance cameras for security. Recently, the majority of video encoding mechanisms to reduce the data rate are mainly lossy compression methods such as the MPEG format. However, when we consider special needs for high-speed communication such as display applications and object detection ones with high accuracy from the video stream, we need to address the encoding mechanism without any loss of pixel information, called visually lossless compression. This paper focuses on the Adaptive Differential Pulse Code Modulation (ADPCM) that encodes a data stream into a constant bit length per data element. However, the conventional ADPCM does not have any mechanism to control dynamically the encoding bit length. We propose a novel ADPCM that provides a mechanism with a variable bit-length control, called ADPCM-VBL, for the encoding/decoding mechanism. Furthermore, since we expect that the encoded data from ADPCM maintains low entropy, we expect to reduce the amount of data by applying a lossless data compression. Applying ADPCM-VBL and a lossless data compression, this paper proposes a video transfer system that controls throughput autonomously in the communication data path. Through evaluations focusing on the aspects of the encoding performance and the image quality, we confirm that the proposed mechanisms effectively work on the applications that needs visually lossless compression by encoding video stream in low latency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.