Abstract

Phase 1 of an ongoing laboratory study of a novel form of stream-bank protection structure is described. "Barbs" are dike-like stone structures designed to protect the (usually unstable) outside-bank regions of channel bends. These low-profile structures point upstream into the flow and typically extend to about 1/4-way across the channel. By disrupting near-bank velocity gradients they promote sediment deposition along the eroding outside-bank region. Their presence also modifies the "helicoidal"-type flow pattern of the bend such that secondary currents, which would otherwise attack the outside-bank, are redirected towards the center of the channel. This novel form of bank protection structure is currently undergoing field tests on selected bends on a number of shallow "wide" streams in Illinois, USA. While initial results are encouraging, additional studies are necessary to develop design criteria for their wider application. In phase 1 of this study, the effectiveness of different arrangements of barb groups, in both 90° and 135° moveable-bed bend sections of a hydraulically "narrow" rectangular channel, are investigated. For each hydraulic condition considered, the channel-bed scour profiles generated by the different barb groups are compared to corresponding "reference" profiles generated in the absence of barbs. Judging the effectiveness of the different barb groups in promoting long-term stability of the outside-bank region is based on two criteria: (i) percent reduction achieved in scouring in the vicinity of the outside-bank and (ii) degree to which the channel thalweg (deepest portion) is moved from the outside-bank region towards the center of the channel.Key words: barb, channel bends, local scouring, bank erosion, bank protection, secondary currents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.