Abstract

Objective. Patients who receive proton beam therapy are exposed to unwanted stray neutrons. Stray radiations increase the risk of late effects in normal tissues, such as second cancers and cataracts, and may cause implanted devices such as pacemakers to malfunction. Compared to therapeutic beams, little attention has been paid to modeling stray neutron exposures. In the past decade, substantial progress was made to develop semiempirical models of stray neutron dose equivalent, but models to routinely calculate neutron absorbed dose and kerma are still lacking. The objective of this work was to develop a new physics based analytical model to calculate neutron spectral fluence, kerma, and absorbed dose in a water phantom. Approach. We developed the model using dosimetric data from Monte Carlo simulations and neutron kerma coefficients from the literature. The model explicitly considers the production, divergence, scattering, and attenuation of neutrons. Neutron production was modeled for 120–250 MeV proton beams impinging on a variety of materials. Fluence, kerma and dose calculations were performed in a 30 × 180 × 44 cm3 phantom at points up to 43 cm in depth and 80 cm laterally. Main Results. Predictions of the analytical model agreed reasonably with corresponding values from Monte Carlo simulations, with a mean difference in average energy deposited of 20%, average kerma coefficient of 21%, and absorbed dose to water of 49%. Significance. The analytical model is simple to implement and use, requires less configuration data that previously reported models, and is computationally fast. This model appears potentially suitable for integration in treatment planning system, which would enable risk calculations in prospective and retrospective cases, providing a powerful tool for epidemiological studies and clinical trials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.