Abstract

Abstract Waveguide technology has great prospects of development in optical see-through near-eye displays with larger field of view, lower thickness and lighter weight than other conventional optical technologies. However, the stray light is usually inevitable in current optical design and manufacturing, causing a poor imaging quality. In this paper, the principle and structures of stray light generation are analyzed, and the causes are discussed by non-sequential ray-tracing with mass precision calculation. From the ray-tracing, the suppression of stray light by optimizing design and manufacturing are achieved. A 2 mm-thickness geometrical waveguide with partially reflective mirror array is designed. The field of view of the optimized geometrical waveguide reaches 47° with 10 mm at exit pupil diameter and 20 mm at eye relief.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.