Abstract
Extreme exposure of skin to Ultraviolet A (UVA)-radiation may induce a dysregulated production of reactive oxygen species (ROS) which can interact with cellular biomolecules leading to oxidative stress, inflammation, DNA damage, and alteration of cellular molecular pathways, responsible for skin photoaging, hyperplasia, erythema, and cancer. For these reasons, the use of dietary natural bioactive compounds with remarkable antioxidant activity could be a strategic tool to counteract these UVA-radiation-caused deleterious effects. Thus, the purpose of the present work was to test the efficacy of strawberry (50 μg/mL)-based formulations supplemented with Coenzyme Q10 (100 μg/mL) and sun protection factor 10 in human dermal fibroblasts irradiated with UVA-radiation. The apoptosis rate, the amount of intracellular reactive oxygen species (ROS) production, the expression of proteins involved in antioxidant and inflammatory response, and mitochondrial functionality were evaluated. The results showed that the synergic topical use of strawberry and Coenzyme Q10 provided a significant (p < 0.05) photoprotective effect, reducing cell death and ROS, increasing antioxidant defense, lowering inflammatory markers, and improving mitochondrial functionality. The obtained results suggest the use of strawberry-based formulations as an innovative, natural, and useful tool for the prevention of UVA exposure-induced skin diseases in order to decrease or substitute the amount of synthetic sunscreen agents.
Highlights
Even if ultraviolet (UV) radiation possesses some health benefits, such as the stimulation of cholecalciferol production, and is often used to cure some skin pathologies, such as vitiligo and psoriasis, it remains the principal cause of different skin disorders [1,2]
As already reported in our previous studies [6,25,26], the Alba cultivar contained a good amount of polyphenols (TPC), flavonoids (TFC) and vitamin C, with values of 2.52 mg Gallic Acid
Capacity (TEAC), 2,2-DiPhenyl-1-PicrylHydrazyl (DPPH) and for Ferric Reducing Antioxidant Power (FRAP), respectively, confirming the results obtained with other strawberry varieties (Table 1) [8,14,29]
Summary
Even if ultraviolet (UV) radiation possesses some health benefits, such as the stimulation of cholecalciferol production, and is often used to cure some skin pathologies, such as vitiligo and psoriasis, it remains the principal cause of different skin disorders [1,2]. Sunscreens protect the skin against cancer and they prevent the onset of other skin diseases caused by solar radiation, such as wrinkle formation, collagen loss, undesired pigmentation, and aging. Compounds derived from natural sources have attracted remarkable attention for their implementation in sunscreen products and have encouraged the market trend towards natural cosmetics This aspect underlines the importance of identifying an extensive selection of natural active molecules in sunscreen formulations, in order to reduce the quantity of synthetic sunscreen agents present in cosmetic formulations [5]. For these reasons, in the last few years, protective properties have been studied for diverse natural polyphenols, including luteolin, silymarin, grape seed proanthocyanidins, green tea polyphenols, genistein, and strawberry anthocyanins [7,8]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.