Abstract
Plant-derived foods rich in polyphenols are associated with several cardiometabolic health benefits, such as reduced postprandial hyperglycaemia. However, their impact on whole-body insulin sensitivity using the hyperinsulinaemic-euglycaemic clamp technique remains under-studied. We aimed to determine the effects of strawberry and cranberry polyphenols (SCP) on insulin sensitivity, glucose tolerance, insulin secretion, lipid profile, inflammation and oxidative stress markers in free-living insulin-resistant overweight or obese human subjects (n 41) in a parallel, double-blind, controlled and randomised clinical trial. The experimental group consumed an SCP beverage (333 mg SCP) daily for 6 weeks, whereas the Control group received a flavour-matched Control beverage that contained 0 mg SCP. At the beginning and at the end of the experimental period, insulin sensitivity was assessed by a hyperinsulinaemic-euglycaemic clamp, and glucose tolerance and insulin secretion by a 2-h oral glucose tolerance test (OGTT). Insulin sensitivity increased in the SCP group as compared with the Control group (+0·9 (sem 0·5)×10-3 v. -0·5 (sem 0·5)×10-3 mg/kg per min per pmol, respectively, P=0·03). Compared with the Control group, the SCP group had a lower first-phase insulin secretion response as measured by C-peptide levels during the first 30 min of the OGTT (P=0·002). No differences were detected between the two groups for lipids and markers of inflammation and oxidative stress. A 6-week dietary intervention with 333 mg of polyphenols from strawberries and cranberries improved insulin sensitivity in overweight and obese non-diabetic, insulin-resistant human subjects but was not effective in improving other cardiometabolic risk factors.
Highlights
According to the International Diabetes Federation[1], up to 592 million people worldwide will suffer from type 2 diabetes by the year 2035
This leads to an exhaustion of β-cell insulin secretion and the development of impaired glucose tolerance (IGT) and subsequent type 2 diabetes
There are several indices calculated from the oral glucose tolerance test (OGTT), such as the Matsuda index and insulin sensitivity index (ISI), or from fasting glycaemia and/or insulinaemia, such as the homeostasis model assessment of insulin sensitivity (HOMA-IR) and the quantitative insulin sensitivity check index (QUICKI), that indirectly estimate insulin sensitivity in humans
Summary
According to the International Diabetes Federation[1], up to 592 million people worldwide (one in ten adults) will suffer from type 2 diabetes by the year 2035. There are several indices calculated from the oral glucose tolerance test (OGTT), such as the Matsuda index and insulin sensitivity index (ISI), or from fasting glycaemia and/or insulinaemia, such as the homeostasis model assessment of insulin sensitivity (HOMA-IR) and the quantitative insulin sensitivity check index (QUICKI), that indirectly estimate insulin sensitivity in humans These indices are not as accurate as a direct measurement of whole-body insulin sensitivity by the hyperinsulinaemic-euglycaemic clamp[20]. To the best of our knowledge, there are no human studies evaluating the effects of strawberry and cranberry polyphenols (SCP) on insulin sensitivity assessed by the hyperinsulinaemic-euglycaemic clamp in non-diabetic insulin-resistant subjects
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.