Abstract

This study compares the physicochemical properties, lignocellulose degradation, microbial community composition, and carbohydrate-active enzymes (CAZymes) in ectopic fermentation systems (EFS) of pig manure mixed with either conventional padding (C) or straw waste (A). The degradation rates of cellulose, hemicellulose, and lignin were found to be significantly higher in A (27.72%, 22.72%, and 18.80%, respectively) than in C (21.05%, 16.17%, and 11.69%, respectively) owing to the activities of lignocellulolytic enzymes. Metagenomics revealed that straw addition had a stronger effect on the bacterial community succession than fungi. The abundances of Sphingobacterium, Pseudomonas, and CAZymes were higher in A than in C, as well as the auxiliary activity enzymes, which are crucial for lignocellulose degradation. Redundancy analysis indicates a positive correlation between lignocellulose degradation and Sphingobacterium, Pseudomonas, Bacillus, and Actinobacteria contents. A structural equation model was applied to further verify that the increased microbial functional diversity was the primary driver of lignocellulosic degradation, which could be effectively regulated by the enhanced temperature with straw addition. Replacing traditional padding with straw can thus accelerate lignocellulosic degradation, promote microbial functional diversity, and improve the EFS efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.