Abstract

The direct application of inorganic-phosphate-solubilizing bacteria (iPSBs) for improving the efficiency of phosphorus (P) use leads to a low rate of bacterial survival. Biochar is a good inoculum carrier for microbial survival, and diverse feedstocks can have different effects. We generated an iPSB community using seven selected iPSB strains with various phylogenic taxonomies and P-solubilizing abilities. Biochar was then inoculated with the iPSB community and applied to soil in pots seeded with rape (Brassica napus). Growth of the rape for four weeks and the effects of biochars produced from six raw feedstocks, rice straw, rice husks, soybean straw, peanut shells, corn cobs and wood, were compared. The synthetic iPSB community had a larger capacity to solubilize inorganic P and exude organic anions than any of the individual strains. The structure of the iPSB community was analyzed by high-throughput sequencing four weeks after inoculation. All seven iPSB strains were detected, dominated by Arthrobacter defluvii 06-OD12. The abundance of the iPSB community was significantly correlated with rape biomass, P content and P uptake (P < 0.05). The biochar amendments conferred 6.86–24.24% survival of the iPSB community, with the straw biochars conferring the highest survival. The available-P content of the biochar rather than soil pH was the dominant factor for iPSB community structure, suggesting that the biochar material was critical for the survival and functioning of the iPSB community. Our study demonstrates the feasibility of biochar-assisted iPSB improvement of crop growth and P uptake.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.