Abstract

To control acid mine drainage (AMD) at source, biochar, a new green and environmentally friendly passivator has been introduced to passivate pyrite. However, the raw material and pyrolysis temperature largely determine the physical and chemical properties of biochar, the causal relationship between biochar and pyrite and the underlying mechanism are still unknown. Here, biochar materials (rice-straw biochar (RSB) and sugarcane bagasse biochar (SBB)) at different pyrolysis temperatures (300–600 °C) were utilized for the passivation of pyrite. The results of our investigations revealed that the passivation ability of RSB was superior to that of SBB. The addition of RSB with higher pyrolysis temperatures could greatly enhance the passivation efficiency of pyrite. RSB-500 (produced at a pyrolysis temperature of 500 °C) achieved the best passivation effect on pyrite. RSB can form Fe-O bonds through C=O bonding with pyrite. Moreover, the addition of RSB created a reducing environment in the mixture system because of its strong electron-donation capacity (EDC) and altered the energy-band structure of pyrite, which promoted the transfer of electrons from biochar to pyrite. On the contrary, the addition of SBB did not result in the formation of Fe-O bonds with pyrite. In addition, the EDC of SBB was also lower than that of RSB and it had almost no effect on the band structure of pyrite. Hence it did not alter the direction of the electron migration. These findings shed light on the mechanism of biochar passivation of pyrite and provide a theoretical foundation for selecting suitable biochar materials for AMD prevention at source.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call