Abstract

This article is devoted to stationary solutions of Euler’s equation on a rotating sphere, and to their relevance to the dynamics of stratospheric flows in the atmosphere of the outer planets of our solar system and in polar regions of the Earth. For the Euler equation, under appropriate conditions, rigidity results are established, ensuring that the solutions are either zonal or rotated zonal solutions. A natural analogue of Arnold’s stability criterion is proved. In both cases, the lowest mode Rossby–Haurwitz stationary solutions (more precisely, those whose stream functions belong to the sum of the first two eigenspaces of the Laplace-Beltrami operator) appear as limiting cases. We study the stability properties of these critical stationary solutions. Results on the local and global bifurcation of non-zonal stationary solutions from classical Rossby–Haurwitz waves are also obtained. Finally, we show that stationary solutions of the Euler equation on a rotating sphere are building blocks for travelling-wave solutions of the 3D system that describes the leading order dynamics of stratospheric planetary flows, capturing the characteristic decrease of density and increase of temperature with height in this region of the atmosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.