Abstract
AbstractA carbonaceous aerosol plume associated with wildfires in British Columbia in August 2017 reached the stratosphere a few days following the fires onset. The Earth Polychromatic Imaging Camera (EPIC) sensor onboard the Deep Space Climate Observatory (DSCOVR) satellite observed the spatial and temporal evolution of the plume for about 6 weeks. EPIC's near‐hourly observations of the Earth's sunlit disk allowed for monitoring the smoke plume several times per day. High ultraviolet aerosol index values pointed to the presence of an aerosol layer in the upper troposphere and lower stratosphere, confirmed with Cloud‐Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar observations. EPIC aerosol optical depth retrievals and CALIOP information on layer height were used to estimate the stratospheric portion of the aerosol mass, reaching a maximum of 268 ± 86 Kt 3 days after the onset of the wildfires. About 10% of this aerosol mass reached the stratosphere on 13 August, whereas the remaining 90% did so over the following 2 days. Observed daytime and inferred nighttime rates of stratospheric aerosol mass increase showed a more rapid daytime increase, consistent with variability in diurnal insolation, suggesting that solar radiation driven processes may have contributed to the observed stratospheric aerosol mass increase. Global modeling results support the possible role of diabatic aerosol self‐lofting. Ozone Mapping and Profiler Suite Limb Profiler (OMPS‐LP) aerosol retrievals showed the spread of stratospheric aerosols in the Northern Hemisphere, reaching peak concentration between October 2017 and January 2018, when about half the Northern Hemisphere experienced a detectable enhancement of stratospheric aerosols with respect to preinjection conditions. The lifetime and aerosol mass of this smoke event were comparable to those of a moderate volcanic eruption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.