Abstract

Surface ozone increased unexpectedly over northern China during the COVID-19 lockdown (CLD) period (23 January–29 February 2020), which was characterized by vigorous emission reduction. The reasons for this ozone enhancement have been speculated from perspectives of chemical responses to the emissions and meteorology. As known, the processes of natural stratospheric ozone injecting to the troposphere are most active in winter and spring. Yet, little attention was paid to stratospheric influences on this ozone enhancement. Here we report a stratospheric intrusion (SI) that reached the surface over northern China on 15–17 February during the CLD. The coevolution of enhanced ozone and sharply declined carbon monoxide and relative humidity (RH) was indicative of the SI occurrence. We show that the SI was facilitated by a cutoff low system that led to abnormally high surface ozone in most part of northern China. We estimate that over the SI period, the injected stratospheric ozone constituted up to 40–45% of the surface ozone over northern China. If the stratospheric ozone inputs were scaled over the entire CLD period, these inputs would account for 4–8% of the surface ozone. In view of the unexpected ozone increase during the CLD, this SI event could explain up to 18% of the ozone increase in some cities, and average 5–10% over larger areas that were affected. Hence, the nonnegligible stratospheric influences urge extra consideration of natural ozone sources in disentangling the role of emission reduction and meteorological conditions during the CLD in China and elsewhere in the world.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.