Abstract
Aims. The stability of the dissipative Taylor-Couette flow with a stable axial density stratification and a prescribed azimuthal magnetic field is considered. Methods. Global nonaxisymmetric solutions of the linearized MHD equations with toroidal magnetic field, density stratification, and differential rotation are found for both insulating and conducting cylinders. Results. Hydrodynamic calculations for various gap widths show that flat rotation laws such as the Kepler rotation are always unstable against SRI. Quasigalactic rotation laws, however, are stable for wide gaps. The influence of a current-free toroidal magnetic field on SRI strongly depends on the magnetic Prandtl number Pm: SRI is supported by Pm > 1 and it is suppressed by Pm < 1. For rotation laws that are too flat, when the hydrodynamic SRI ceases, a smooth transition exists to the instability that the toroidal magnetic field produces in combination with the differential rotation. For the first time this nonaxisymmetric azimuthal magnetorotational instability (AMRI) has been computed in the presence of an axial density gradient. If the magnetic field between the cylinders is not current-free, then the Tayler instability occurs, too. The transition from the nonmagnetic centrifugal instability to the magnetic Tayler instability in the presence of differential rotation and density stratification proves to be complex. Most spectacular is the “ballooning” of the stability domain by the density stratification: already a small rotation stabilizes magnetic fields against the Tayler instability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.