Abstract
Abstract A technique is described to retrieve stratocumulus liquid water content (LWC) using the differential attenuation measured by vertically pointing radars at 35 and 94 GHz. Millimeter-wave attenuation is proportional to LWC and increases with frequency, so LWC can be derived without the need to make any assumptions on the nature of the droplet size distribution. There is also no need for the radars to be well calibrated. A significant advantage over many radar techniques in stratocumulus is that the presence of drizzle drops (those with a diameter larger than around 50 μm) does not affect the retrieval, even though such drops may dominate the radar signal. It is important, however, that there are not significant numbers of drops larger than 600 μm, which scatter outside of the Rayleigh regime at 94 GHz. A lidar ceilometer is used to locate the cloud base in the presence of drizzle falling below the cloud. An accuracy of around 0.04 g m−3 is achievable with averaging over 1 min and 150 m (two range gates), but for the previously suggested frequency pair of 10 and 35 GHz, the corresponding accuracy would be considerably worse at 0.34 g m−3. First, the retrieval of LWC is simulated using aircraft-measured size spectra taken from a profile through marine stratocumulus. Results are then presented from two case studies—one using two cloud radars at Chilbolton in southern United Kingdom, and another using the Cloud Profiling Radar System at the Atmospheric Radiation Measurement site in Oklahoma. The liquid water path from the technique was found to be in good agreement with the values that were obtained from microwave radiometers, with the difference between the two being close to the accuracy of the radiometer retrieval. In the case of well-mixed stratocumulus, the profiles were close to adiabatic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.