Abstract

Background and Aims. The largely Mississippian strata of the Kilpatrick Hills, located at the western end of the Scottish Midland Valley, enclose several macrofossil floras that together contain ca 21 organ-species of permineralised plants and ca 44 organ-species of compressed plants, here estimated to represent 25 whole-plant species (Glenarbuck = nine, Loch Humphrey Burn Lower = 11, Upper = seven). The most significant locality is the internationally important volcanigenic sequence that is reputedly intercalated within the Clyde Plateau Lava Formation at Loch Humphrey Burn, where ca 30 m of reworked tuffs and other clastic sediments enclose one of the world’s most important terrestrial lagerstätten of this period. We here explore the palaeoecology and palaeoenvironments of the locality, and elucidate its controversial age.Methods. Repeated re-excavation of key exposures allowed recognition of five main depositional units, differing in thickness from 4 m to 12 m. It also permitted detailed sampling for plant macrofossils and microfossils throughout the succession. Several approaches are integrated to re-assess the taphonomy and preservation of these exceptional plant fossils.Key Results. The deposits are rich in taxonomically diverse miospores and in toto contain at least six well-developed compression floras, together with two beds yielding nodules that enclose well-researched anatomically preserved plants permineralised in calcite. Bulk geochemistry shows that the upper nodules formed by migration of Ca with subordinate Mn and Na. Some phylogenetically important plant fossils recovered in the early 20th century have been traced to their source horizons. Trends in relative proportions of macrofossil and microfossil taxa through the sequence are only moderately congruent, perhaps reflecting the likelihood that microfossils sample the regional rather than the local flora.Conclusions. The Loch Humphrey Burn sequence encompasses a wide range of depositional environments that intercalates high-energy fluvial channels (possibly developed during flash floods in a seasonally arid environment) with lower energy flood plains and a brief lacustrine interval; all yield macrofloras typically dominated by allochthonous pteridosperms. The uppermost unit represents clastic swamps dominated by (hypo)autochthonous lycopsids and ferns s.l., and is tentatively correlated with the entire—reputedly mid-Visean—exposure at nearby Glenarbuck. Other nearby localities with rooted tree-lycopsids appear to have immediately pre-dated the onset of regional volcanism. These interpretations allow revised provenancing and dating of historical collections of key plant fossils. The late Tournaisian date previously attributed on palynological evidence to the lowest unit at Loch Humphrey Burn appears increasingly improbable when our re-appraisal of the macrofloras and microfloras is placed in the context of (a) statistical comparison with other permineralised Mississippian assemblages and (b) recent stratigraphic and geochronologic studies in the region; rather, we ascribe the entire Kilpatrick Hills sequence to the mid-Visean. Stratigraphic and palaeoenvironmental interpretations of the Mississippian rocks of the Kilpatrick Hills have especially profound implications for our understanding of the physical evolution of Scotland during the Variscan orogeny and formation of Pangea.

Highlights

  • Palaeobotany of Scottish Mississippian volcanic terrainsThe Geological Conservation Review for Palaeozoic palaeobotany (Cleal & Thomas, 1995, Fig. 1.5) revealed two concentrations of internationally important fossil plant localities in the British Isles: dominantly Siluro-Devonian localities along the Welsh Borders, and Devono-Carboniferous localities in and around the Scottish Midland Valley

  • The best of the Scottish localities occur at either end of the Valley and, due either directly or indirectly to associated volcanicity, preserve plant macrofossils in anatomical detail (Scott, Galtier & Clayton, 1984; Scott, 1990; Scott & Galtier, 1996); they are intimately associated with stratigraphically diagnostic microfossil assemblages (Clayton et al, 1978)

  • Reviewing the macrofossil data previously summarised by Bateman (1986, unpublished data), Stevens (2009) estimated the number of whole-plant species of each taxonomic class present in each of five beds within the Loch Humphrey Burn and Glenarbuck successions, including the famous Walton Bed within Unit 4 (Fig. 9)

Read more

Summary

INTRODUCTION

The Geological Conservation Review for Palaeozoic palaeobotany (Cleal & Thomas, 1995, Fig. 1.5) revealed two concentrations of internationally important fossil plant localities in the British Isles: dominantly Siluro-Devonian localities along the Welsh Borders, and Devono-Carboniferous localities in and around the Scottish Midland Valley. (5) A miospore profile spanning 30 m of sediment (Scott, Galtier & Clayton, 1984) had recently become available, potentially allowing high-resolution relative dating of individual beds (and of plant-bearing horizons) This in turn suggested that Loch Humphrey Burn and Glenarbuck contain the only known mid-Visean permineralised floras in Europe, and are exceptional in reputedly spanning the contentious Tournaisian–Visean stage boundary. A 60 cm-thick horizon near the base (within Bed 1a of Scott, Galtier & Clayton, 1984) contains abundant fragments of gymnospermous wood (Flora 1), some fragments derived from large trees; these were overlooked by AC Scott et al permineralised, these woods are poorly preserved, having suffered extensive calcite recrystallisation and pyritisation The lithology of this bed is consistent with the ‘‘coarse ash agglomerate’’ that reputedly provided Scott (1899, et seq.) with his three new species of woody stem; the poor quality of preservation of his Calamopitys radiata in particular strongly resembles that of stems extracted from the bed in 1985 by RMB Our task was to determine whether the microfloras of the Kilpatrick Hills yielded floristic data congruent with those already obtained from the macrofloras

Background
Findings
Materials and methods
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call