Abstract

The Upper Triassic (Carnian–Norian) Martin Bridge Formation of northeastern Oregon, southeastern Washington, and western Idaho is characterized by rapidly shifting depositional processes within a tropical volcanic island arc setting. Martin Bridge sequences in the Hells Canyon and northern Wallowa Mountains document shallow-water peritidal evaporitic sediments that are succeeded by deeper and predominantly subtidal deposits. This indicates drowning of the carbonate platform and a transition to deeper-water turbiditic sedimentation before a late Triassic transition into the overlying mid-Norian to Jurassic Hurwal Formation. At the type locality in the southern Wallowa Mountains, dysaerobic shales, carbonate debris sheets, and turbiditic sediments indicate distal slope and basinal environments while other facies at other sites in the Wallowa Mountains and Hells Canyon area s indicate reef and shallow-water platform settings. In this paper we formally recognize the name Martin Bridge Formation and reinstate the type locality in the southern Wallowa Mountains as the principal unit stratotype. An additional reference section is given at Hurricane Creek in the northern Wallowa Mountains. The Martin Bridge is formally divided into four members: the Eagle Creek and Summit Point Members are introduced and formally proposed herein and the BC Creek and Scotch Creek Members also are elevated to formal status. A partial reconstruction of the Wallowa terrane during deposition of the Martin Bridge Formation suggests a north-south (or northeast-southwest) trending platform margin facing a forearc basin situated to the east (or southeast). The lithofacies and paleontological characteristics of the Martin Bridge can be put into the framework of a deposition and a tectonic model to help better explain many of the stratigraphic and

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.