Abstract

The Blair Formation (Upper Cretaceous) is the lowermost unit of the Mesaverde Group in southwestern Wyoming. Outcrop study of the Blair exposures on the east flank of the Rock Springs uplift reveals 1,100 ft (330 m) of sandstone, siltstone, and shale. The formation has a sharp conformable to locally erosional basal contact and contains intraformational channeling, syndepositional slumping, and high-energy sedimentary structures. Facies relationships indicate the Blair represents a slope and basinal deposit laterally equivalent to the shelf and delta complex of the lower Rock Springs Formation to the north. Overall stratification types, textures, and southeast paleotransport directions recorded within the Blair, which are normal to the southwest-trending Rock Springs shore ine, support this interpretation. High sedimentation rates in excess of subsidence rates during the early Campanian, possibly related to early movement on the Absaroka thrust and a eustatic lowering of sea level approximately 81 Ma, caused rapid shoreline progradation and favored the development of a narrow shelf. These conditions enabled sand-sized material to bypass the shelf and be deposited in slope and basin environments. A present-day example of these relationships is the modern Mississippi delta located near the shelf-slope break of the Gulf of Mexico. Recognition of a narrow shelf in southwestern Wyoming during the early Campanian requires a modification of Late Cretaceous paleogeography to incorporate the concept of depositional topography. The occurrence of slope and basin sandstones in the Blair suggests that new interpretations may be needed to explain sandstone distribution for other stratigraphic intervals within the Cretaceous of the Western Interior. End_of_Article - Last_Page 866------------

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call