Abstract

AbstractThe relative weathering of a sequence of five palaesols formed in different parent materials, including bedrock of phonolitic composition, is described and assessed. The three lower palaeosols (units 3–5) are considered to be of interglacial origin. The saprolite (unit 5), in phonolite, formed prior to deposition of the lower Brunhes‐age till, is considered to be as old as the Brunhes Matuyama boundary (0.73 myr). The other two palaeosols in this group (units 3 and 4), derived from loess and till, respectively, formed over middle to late Brunhes time under palaeoclimates that were wetter (and presumably warmer), and of sufficient leaching power to move clay, as well as organically complexed extractable Fe and Al. The palaeosols in unit 3 are more complex than the lower ones. Their upper and lower horizons have about the same chemical composition as the lowest two palaeosols, while the middle horizons are similar to the upper two palaeosols (units 1 and 2). Radiocarbon dates for unit 3 are considered to be too young to account for the strong weathering in the upper and lower horizons. This interpretation is supported by high D/L ratios of aspartic acid. Overlying sediments, emplaced by episodic colluvial (unit 2) and slope wash (unit 1) processes, are less weathered; the lower colluvial unit in this group was emplaced during the late stade of the last glaciation. The surface sediments were emplaced more recently during the same interval and weathered mainly during the post‐glacial period. Tentative correlations with core 82PCS18 from the Canary Basin show that upper unit 3 is probably equivalent to Isotope Stage 5e, lower unit 3 to Isotope Stage 7, unit 4 to Isotope Stage 8, and unit 5 to Isotope Stage 9. Units 1 and 2 are firmly correlated with Isotope Stage 2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call