Abstract

Seismic sections and the analysis of lithostratigraphic units from well-log data were used to develop a new stratigraphic correlation of the Winduck, Snake Cave and Ravendale Intervals for the Blantyre Sub-basin. The stratigraphic boundaries of the intervals were defined at marked changes in well-log characteristics, and depth estimates of the boundaries were derived from the well-log data in Mt Emu 1, Blantyre 1 and Kewell East 1. Six seismic-stratigraphic boundaries have been identified in the seismic sections to show the continuity of the latest Silurian to Holocene sediments throughout the Blantyre Sub-basin; from bottom to top they are: H-1, base of the Winduck Interval; H-2, base of the Snake Cave Interval; H-3, base of the Ravendale Interval; H-4/5 base of the undifferentiated Upper Carboniferous/Permian sediments; and H-6 base of the undifferentiated Cenozoic sediments. All stratigraphic boundaries are based on good continuous markers, with strong amplitudes throughout the whole sub-basin. A three-dimensional geological model was developed from the seismic data to map out the geometry of the key reflectors, and hence the structure and stratigraphy of the Winduck, Snake Cave and Ravendale Intervals in the areas where these intervals have been preserved. This model has better defined the Wilcannia High and two smaller highs around the Mt Emu 1 and Snake Flat 1 wells, and further defines the relationships between the stratigraphy, sub-basin geometry and development of complex structures in the Blantyre Sub-basin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call