Abstract
A new mathematical theory for the analysis of leakage rate behavior of annular shaft seals operating in the two-phase regime is presented which is based on the stratified flow of the boiling liquid and vapor phases. The flow is presumed to be axisymmetric, steady, and so rapid as to be turbulent. A set of governing equations for film-averaged liquid and vapor properties is developed. The streams are assumed to be adiabatic and moving at different average velocities. Effects of heat generation due to viscous dissipation and of interfacial mass transfer are accounted for fully. The methods of calculation for leakage under choked and unchoked conditions are explained. Many numerical results of leakage rate calculations for cryogenic oxygen are presented and are compared to corresponding results from a homogeneous-equilibrium flow model. Parametric studies show that leakage is fairly insensitive to the arrangement of the liquid and vapor phases within the seal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.