Abstract
We perform numerical box simulations of strongly stratified turbulence. The equations solved are the Boussinesq equations with constant Brunt–Väisälä frequency and forcing either in rotational or divergent modes, or, with another terminology, in vortical or wave modes. In both cases, we observe a forward energy cascade and inertial-range scaling of the horizontal kinetic and potential energy spectra. With forcing in rotational modes, there is approximate equipartition of kinetic energy between rotational and divergent modes in the inertial range. With forcing in divergent modes the results are sensitive to the vertical forcing wavenumber kfv. If kfv is sufficiently large the dynamics is very similar to the dynamics of the simulations which are forced in rotational modes, with approximate equipartition of kinetic energy in rotational and divergent modes in the inertial range. Frequency spectra of rotational, divergent and potential energy are calculated for individual Fourier modes. Waves are present at low horizontal wavenumbers corresponding to the largest scales in the boxes. In the inertial range, the frequency spectra exhibit no distinctive peaks in the internal wave frequency. In modes for which the vertical wavenumber is considerably larger than the horizontal wavenumber, the frequency spectra of rotational and divergent modes fall on top of each other. The simulation results indicate that the dynamics of rotational and divergent modes develop on the same time scale in stratified turbulence. We discuss the relevance of our results to atmospheric and oceanic dynamics. In particular, we review a number of observational reports indicating that stratified turbulence may be a prevalent dynamic process in the ocean at horizontal scales of the order of 10 or 100 m up to several kilometres.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.