Abstract

Natural restrictions on the syntax of the second-order (i.e., polymorphic) lambda calculus are of interest for programming language theory. One of the authors showed in Leivant (1991) that when type abstraction in that calculus is stratified into levels, the definable numeric functions are precisely the super-elementary functions (level [Escr ]4 in the Grzegorczyk Hierarchy). We define here a second-order lambda calculus in which type abstraction is stratified to levels up to ωω, an ordinal that permits highly uniform (and finite) type inference rules. Referring to this system, we show that the numeric functions definable in the calculus using ranks < ω[lscr ] are precisely Grzegorczyk's class [Escr ][lscr ]+3 ([lscr ] [ges ] 1). This generalizes Leivant (1991), where this is proved for [lscr ] = 1. Thus, the numeric functions definable in our calculus are precisely the primitive recursive functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.