Abstract

We consider Euler’s equations for free surface waves traveling on a body of density stratified water in the scenario when gravity and surface tension act as restoring forces. The flow is continuously stratified, and the water layer is bounded from below by an impermeable horizontal bed. For this problem we establish three equivalent classical formulations in a suitable setting of strong solutions which may describe nevertheless waves with singular density gradients. Based upon this equivalence we then construct two-dimensional symmetric periodic traveling waves that are monotone between each crest and trough. Our analysis uses, to a large extent, the availability of a weak formulation of the water wave problem, the regularity properties of the corresponding weak solutions, and methods from nonlinear functional analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.