Abstract

AbstractA thermoplastic olefin blend consisting of isotactic polypropylene (PP) and an ethylene‐butene copolymer (EBR) impact modifier (25 wt % EBR) was subjected to a short, high‐shear pulse within the flow channel of a pressure‐driven microextruder following low‐shear channel filling from a reservoir of the melt. The resulting morphology was examined by laser scanning confocal fluorescence microscopy (LSCFM), with contrast provided by a fluorescent tracer in the EBR minor phase. Shear experiments were performed under isothermal conditions with a known wall shear stress for a specified duration, providing a well‐defined thermal and flow history. Low‐shear channel filling produces small droplets across the central region of the channel and large droplets, consistent with steady‐state shear, in the regions near the channel walls. After cooling the molten blend to a crystallization temperature of 153 °C, a brief interval (5 s ∼ 1/2000 of the quiescent crystallization time) of high shear (wall shear stress: 0.1 MPa) induces rapid, highly oriented crystallization and a stratified morphology. Ex situ LSCFM reveals a “skin” at the channel walls (∼70 μm) in which greatly elongated fiberlike droplets, oriented along the flow direction, are embedded in highly oriented crystalline PP. Further from the walls but directly beside the skin layers are surprising zones in which EBR domains show no deformation or orientation. Several zones of intermediate deformation and orientation at an angle to the flow direction are located closer to the center of the channel. At the center of the channel, EBR droplets are spherical, as expected for channel flow. The various strata are explained by the interplay of droplet deformation, breakup, and coalescence with the shear‐induced crystallization kinetics of the matrix. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2842–2859, 2002

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.