Abstract

At an altitude of 3,570 m, the volcanic lake Socompa in the Argentinean Andes is presently the highest site where actively forming stromatolite-like structures have been reported. Interestingly, pigment and microsensor analyses performed through the different layers of the stromatolites (50 mm-deep) showed steep vertical gradients of light and oxygen, hydrogen sulfide and pH in the porewater. Given the relatively good characterization of these physico-chemical gradients, the aim of this follow-up work was to specifically address how the bacterial diversity stratified along the top six layers of the stromatolites which seems the most metabolically important and diversified zone of the whole microbial community. We herein discussed how, in only 7 mm, a drastic succession of metabolic adaptations occurred: i.e., microbial communities shift from a UV-high/oxic world to an IR-low/anoxic/high H2S environment which force stratification and metabolic specialization of the bacterial community, thus, modulating the chemical faces of the Socompa stromatolites. The oxic zone was dominated by Deinococcus sp. at top surface (0.3 mm), followed by a second layer of Coleofasciculus sp. (0.3 to ∼2 mm). Sequences from anoxygenic phototrophic Alphaproteobacteria, along with an increasing diversity of phyla including Bacteroidetes, Spirochaetes were found at middle layers 3 and 4. Deeper layers (5–7 mm) were mostly occupied by sulfate reducers of Deltaproteobacteria, Bacteroidetes and Firmicutes, next to a high diversity and equitable community of rare, unclassified and candidate phyla. This analysis showed how microbial communities stratified in a physicochemical vertical profile and according to the light source. It also gives an insight of which bacterial metabolic capabilities might operate and produce a microbial cooperative strategy to thrive in one of the most extreme environments on Earth.

Highlights

  • Microbial stromatolites are laminated organo-sedimentary structures accreted as a result of trapping, binding and/or in situ precipitation of minerals linked to the metabolic activities of microorganisms (Walter, 1976; Burne and Moore, 1987)

  • We reported non-lithified modern stromatolites growing at the shore of the remote volcanic lake Socompa at 3570 m a.s.l. in the Puna (Argentinean Andes) (Farías et al, 2011a,b, 2013)

  • Rarefaction analysis showed how the number of operational taxonomic units (OTUs) increased with sampled layer depth, the dominance and evenness indicators reveal a simple community with dominant OTUs at the top layer, and a complex community with more evenness increasing with depth (Figure 2)

Read more

Summary

Introduction

Microbial stromatolites are laminated organo-sedimentary structures accreted as a result of trapping, binding and/or in situ precipitation of minerals linked to the metabolic activities of microorganisms (Walter, 1976; Burne and Moore, 1987) They are regarded as the earliest complex ecosystems on Earth and their emergence is still a matter of debate, geological records. We reported non-lithified modern stromatolites growing at the shore of the remote volcanic lake Socompa at 3570 m a.s.l. in the Puna (Argentinean Andes) (Farías et al, 2011a,b, 2013). This region is a desert area that withstand the most elevated doses of global solar radiation on Earth (Piacentini et al, 2003; NASA SSE Release, 2014). Favorable conditions are provided by a nearby hydrothermal stream that supplies nutrients and maintains the water column temperature at a relatively stable level (around 26◦C)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call