Abstract

Temperatures were measured in a small lagoon in the windward reef flat of Davies Reef in the central Great Barrier Reef and examined on three time scales to gain three perspectives on thermal stratification and the trapping of bottom water. Profiling for stratification and dye revealed layering where bottom water was trapped and released by the successive capping and uncapping of the lagoon by a diurnal thermocline. A 1-month monitoring array revealed a solar synchronization, with the temperature of reef-flat water exceeding temperatures of lagoon water by up to 1 5�C within 1 h of midday, and lagoon stratification lagging this by 1 h. There was also a lunar synchronization with mixing proceeding during nocturnal rising tides. Lagoon surface and bottom temperatures were also monitored for 11 months. The amplitude of the diurnal stratification showed no coherence either with the amplitude of the tide (marked spring-neap tides) or with scalar wind stress. The low frequency amplitude of the diurnal oscillation was coherent with the longshore wind vector at periods near 3 6 days and in a band approximately from 10 to 40 days. Daily stratification increased when winds were poleward and decreased when winds were equatonvard. Events of flushing were separated on average by 9 h, but the most frequently observed separation was 5 h and only 10% of separations exceeded 18 h during the 11 months.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.