Abstract

We consider an allocation problem of multiple types of objects to agents, where each type of object has multiple copies (e.g., multiple seats in a school), each agent is endowed with an object, and some distributional constraints are imposed on the allocation (e.g., minimum/maximum quotas). We develop two mechanisms that are strategyproof, feasible (they always satisfy distributional constraints), and individually rational, assuming the distributional constraints are represented by an M-convex set. One mechanism, based on Top Trading Cycles, is Pareto efficient; the other, which belongs to the mechanism class specified by Kojima et al. [1], satisfies a relaxed fairness requirement. The class of distributional constraints we consider contains many situations raised from realistic matching problems, including individual minimum/maximum quotas, regional maximum quotas, type-specific quotas, and distance constraints. Finally, we experimentally evaluate the performance of these mechanisms by a computer simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call